Telegram Group & Telegram Channel
Объясните, как используется энтропия в процессе построения дерева решений? Что ещё может использоваться вместо энтропии?

Энтропия измеряет непредсказуемость реализации случайной величины, или иными словами неопределённость в данных.

🌲 В контексте построения дерева-классификатора объекты — это случайные величины, которые могут принимать значение либо первого, либо второго класса. Если случайная величина принимает только одно значение, то она абсолютно предсказуема, и энтропия равна нулю. Если энтропия близка к единице, это значит, что случайная величина непредсказуема.

При построении дерева мы стремимся разбить объекты так, чтобы с получившимися группами энтропия была минимальной. Пример:
🟡 Допустим, у нас есть по 25 точек каждого класса — всего 50. Сначала мы выбираем разбиение, например, по X <= 5. Тогда в левую часть попадают 25 точек класса 0 и 12 точек класса 1, а в правую — ноль точек класса 0 и 13 точек класса 1. Энтропия левой группы равна 0.9, а правой — нулю. Это логично, ведь в правой группе все объекты принадлежат только одному классу, неопределённости нет.
🟡 Мы сделаем ещё несколько разбиений и выберем из них то, которое радикальнее всего уменьшит общую неопределённость системы.

🌲 Помимо энтропии можно использовать критерий Джини. Он представляет собой вероятность того, что случайно выбранный объект из набора будет неправильно классифицирован, если его случайно пометить согласно распределению меток в подвыборке.

#junior
#middle



tg-me.com/ds_interview_lib/126
Create:
Last Update:

Объясните, как используется энтропия в процессе построения дерева решений? Что ещё может использоваться вместо энтропии?

Энтропия измеряет непредсказуемость реализации случайной величины, или иными словами неопределённость в данных.

🌲 В контексте построения дерева-классификатора объекты — это случайные величины, которые могут принимать значение либо первого, либо второго класса. Если случайная величина принимает только одно значение, то она абсолютно предсказуема, и энтропия равна нулю. Если энтропия близка к единице, это значит, что случайная величина непредсказуема.

При построении дерева мы стремимся разбить объекты так, чтобы с получившимися группами энтропия была минимальной. Пример:
🟡 Допустим, у нас есть по 25 точек каждого класса — всего 50. Сначала мы выбираем разбиение, например, по X <= 5. Тогда в левую часть попадают 25 точек класса 0 и 12 точек класса 1, а в правую — ноль точек класса 0 и 13 точек класса 1. Энтропия левой группы равна 0.9, а правой — нулю. Это логично, ведь в правой группе все объекты принадлежат только одному классу, неопределённости нет.
🟡 Мы сделаем ещё несколько разбиений и выберем из них то, которое радикальнее всего уменьшит общую неопределённость системы.

🌲 Помимо энтропии можно использовать критерий Джини. Он представляет собой вероятность того, что случайно выбранный объект из набора будет неправильно классифицирован, если его случайно пометить согласно распределению меток в подвыборке.

#junior
#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/126

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA